Cyclic nucleotides modulate genioglossus and hypoglossal responses to excitatory inputs in rats.
نویسندگان
چکیده
RATIONALE Previous studies modulating pharyngeal muscle activity with pharmacologic approaches have targeted membrane receptors on pharyngeal motoneurons. Whether modulation of intracellular pathways can increase pharyngeal muscle activity, however, has not been investigated but is relevant to pharmacologic treatments of obstructive sleep apnea. OBJECTIVES To determine if modulating the second messenger cyclic adenosine-3'-5'-monophosphate (cAMP) at the hypoglossal motor nucleus (HMN) will increase genioglossus activity across sleep- wake states. METHODS Forty-eight rats were implanted with electroencephalogram and neck electrodes to record sleep-wake states and genioglossus and diaphragm electrodes for respiratory muscle recordings. Microdialysis probes were inserted into the HMN to perfuse artificial cerebrospinal fluid and (1) forskolin (500 microM, adenylyl cyclase activator to increase cAMP), (2) a cAMP analog (500 microM), (3) iso-butyl-methylxanthine (IBMX; 300 microM, phosphodiesterase inhibitor), or (4) a cyclic guanosine-3'-5'-monophosphate (cGMP) analog (500 microM, 8-Br-cGMP). MEASUREMENTS AND MAIN RESULTS Forskolin and the cAMP analog at the HMN increased respiratory-related and tonic genioglossus activities in wakefulness and non-REM sleep but not REM sleep. IBMX did not affect genioglossus activity in awake or sleeping rats. However, IBMX abolished the robust excitatory responses to serotonin and phenylephrine at the HMN, but responses to non-N-methyl-D-aspartate receptor activation remained. These effects of IBMX were mimicked by 8-Br-cGMP. CONCLUSIONS Genioglossus responses to manipulation of cAMP at the HMN are differentially modulated by sleep-wake state. Selective abolition of serotonin and phenylephrine responses after IBMX suggests that under conditions of nonspecific phosphodiesterase inhibition the HMN is unresponsive to certain, otherwise potent, excitatory inputs. Similar responses with 8-Br-cGMP suggest this effect is likely mediated by cGMP pathways.
منابع مشابه
Intensity and frequency dependence of laryngeal afferent inputs to respiratory hypoglossal motoneurons.
Inspiratory hypoglossal motoneurons (IHMs) mediate contraction of the genioglossus muscle and contribute to the regulation of upper airway patency. Intracellular recordings were obtained from antidromically identified IHMs in anesthetized, vagotomized cats, and IHM responses to electrical activation of superior laryngeal nerve (SLN) afferent fibers at various frequencies and intensities were ex...
متن کاملNoradrenergic Activation of Hypoglossal Nucleus Modulates the Central Regulation of Genioglossus in Chronic Intermittent Hypoxic Rats
Neuromuscular compensation of the genioglossus muscle can be induced by chronic intermittent hypoxia (CIH) in obstructive sleep apnea to maintain upper airway stability. Noradrenergic activation of hypoglossal nucleus plays a critical role in the central control of the genioglossus. However, it remains unknown whether norepinephrine takes part in the central regulation of the genioglossus durin...
متن کاملSystemic vs. central administration of common hypnotics reveals opposing effects on genioglossus muscle activity in rats.
STUDY OBJECTIVES To determine if systemic administration of selected sedative-hypnotics that modulate the function of the y-amino-butyric acid-A (GABAA) receptor can: (i) delay arousal thereby allowing genioglossus (GG) activity to increase more in response to respiratory stimulation during sleep, (ii) also cause the robust increase in GG activity during undisturbed sleep recently observed with...
متن کاملInhibition of serotonergic medullary raphe obscurus neurons suppresses genioglossus and diaphragm activities in anesthetized but not conscious rats.
Although exogenous serotonin at the hypoglossal motor nucleus (HMN) activates the genioglossus muscle, endogenous serotonin plays a minimal role in modulating genioglossus activity in awake and sleeping rats (Sood S, Morrison JL, Liu H, and Horner RL. Am J Respir Crit Care Med 172: 1338-1347, 2005). This result therefore implies that medullary raphe neurons also play a minimal role in the norma...
متن کاملNOXIOUS LINGUAL STIMULATION INFLUENCES THE EXCITABILITY OF THE FACE PRIMARY MOTOR CEREBRAL CORTEX (FACE MI) IN THE RAT by
The mechanisms whereby orofacial pain affects motor function are poorly understood. The aims were to determine (a) if lingual algesic chemical stimulation affected face MI excitability defined by intracortical microstimulation (ICMS); (b) if any such effects were limited to the motor efferent MI zones driving muscles in the vicinity of the noxious stimulus. Ketamine-anesthetized Sprague-Dawley ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of respiratory and critical care medicine
دوره 173 5 شماره
صفحات -
تاریخ انتشار 2006